erts_alloc
erts_alloc is an Erlang Run-Time System internal memory
      allocator library. erts_alloc provides the Erlang
      Run-Time System with a number of memory allocators.
Allocators
Currently the following allocators are present:
temp_alloceheap_allocbinary_allocets_allocdriver_allocsl_allocll_allocfix_allocstd_allocsys_allocmalloc implementation
       used on the specific OS.mseg_allocmseg_alloc is used by other
       allocators for allocating memory segments and is currently only
       available on systems that have the mmap system
       call. Memory segments that are deallocated are kept for a
       while in a segment cache before they are destroyed. When
       segments are allocated, cached segments are used if possible
       instead of creating new segments.  This in order to reduce
       the number of system calls made.sys_alloc is always enabled and
      cannot be disabled. mseg_alloc is always enabled if it is
      available and an allocator that uses it is enabled. All other
      allocators can be enabled or disabled.
      By default all allocators are enabled.
      When an allocator is disabled, sys_alloc is used instead of
      the disabled allocator.
The main idea with the erts_alloc library is to separate
      memory blocks that are used differently into different memory
      areas, and by this achieving less memory fragmentation. By
      putting less effort in finding a good fit for memory blocks that
      are frequently allocated than for those less frequently
      allocated, a performance gain can be achieved.
The alloc_util framework
Internally a framework called alloc_util is used for
      implementing allocators. sys_alloc, and
      mseg_alloc do not use this framework; hence, the
      following does not apply to them.
An allocator manages multiple areas, called carriers, in which
      memory blocks are placed. A carrier is either placed in a
      separate memory segment (allocated via mseg_alloc), or in
      the heap segment (allocated via sys_alloc). Multiblock
      carriers are used for storage of several blocks. Singleblock
      carriers are used for storage of one block. Blocks that are
      larger than the value of the singleblock carrier threshold
      (sbct) parameter are placed
      in singleblock carriers. Blocks that are smaller than the value
      of the sbct parameter are placed in multiblock
      carriers. Normally an allocator creates a "main multiblock
      carrier". Main multiblock carriers are never deallocated. The
      size of the main multiblock carrier is determined by the value
      of the mmbcs parameter.
 Sizes of multiblock carriers
      allocated via mseg_alloc are
      decided based on the values of the largest multiblock carrier
      size (lmbcs), the smallest
      multiblock carrier size (smbcs),
      and the multiblock carrier growth stages
      (mbcgs) parameters. If
      nc is the current number of multiblock carriers (the main
      multiblock carrier excluded) managed by an allocator, the size
      of the next mseg_alloc multiblock carrier allocated by
      this allocator will roughly be
      smbcs+nc*(lmbcs-smbcs)/mbcgs when
      nc <= mbcgs,
      and lmbcs when nc > mbcgs. If the value of the
      sbct parameter should be larger than the value of the
      lmbcs parameter, the allocator may have to create
      multiblock carriers that are larger than the value of the
      lmbcs parameter, though.
      Singleblock carriers allocated via mseg_alloc are sized
      to whole pages.
Sizes of carriers allocated via sys_alloc are
      decided based on the value of the sys_alloc carrier size
      (ycs) parameter. The size of
      a carrier is the least number of multiples of the value of the
      ycs parameter that satisfies the request.
Coalescing of free blocks are always performed immediately. Boundary tags (headers and footers) in free blocks are used which makes the time complexity for coalescing constant.
The memory allocation strategy used for multiblock carriers by an allocator is configurable via the as parameter. Currently the following strategies are available:
Strategy: Find the smallest block that satisfies the requested block size.
Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N is the number of sizes of free blocks.
Strategy: Find the smallest block that satisfies the requested block size. If multiple blocks are found, choose the one with the lowest address.
Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N is the number of free blocks.
Strategy: Find the block with the lowest address that satisfies the requested block size.
Implementation: A balanced binary search tree is used. The time complexity is proportional to log N, where N is the number of free blocks.
Strategy: Find the carrier with the lowest address that can satisfy the requested block size, then find a block within that carrier using the "best fit" strategy.
Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N is the number of free blocks.
Strategy: Find the carrier with the lowest address that can satisfy the requested block size, then find a block within that carrier using the "adress order best fit" strategy.
Implementation: Balanced binary search trees are used. The time complexity is proportional to log N, where N is the number of free blocks.
Strategy: Try to find the best fit, but settle for the best fit found during a limited search.
Implementation: The implementation uses segregated free lists with a maximum block search depth (in each list) in order to find a good fit fast. When the maximum block search depth is small (by default 3) this implementation has a time complexity that is constant. The maximum block search depth is configurable via the mbsd parameter.
Strategy: Do not search for a fit, inspect only one free block to see if it satisfies the request. This strategy is only intended to be used for temporary allocations.
Implementation: Inspect the first block in a free-list. If it satisfies the request, it is used; otherwise, a new carrier is created. The implementation has a time complexity that is constant.
As of erts version 5.6.1 the emulator will refuse to
	  use this strategy on other allocators than temp_alloc.
	  This since it will only cause problems for other allocators.
Apart from the ordinary allocators described above a number of pre-allocators are used for some specific data types. These pre-allocators pre-allocate a fixed amount of memory for certain data types when the run-time system starts. As long as pre-allocated memory is available, it will be used. When no pre-allocated memory is available, memory will be allocated in ordinary allocators. These pre-allocators are typically much faster than the ordinary allocators, but can only satisfy a limited amount of requests.
System Flags Effecting erts_alloc
Warning!
Only use these flags if you are absolutely sure what you are doing. Unsuitable settings may cause serious performance degradation and even a system crash at any time during operation.
Memory allocator system flags have the following syntax:
      +M<S><P> <V>
      where <S> is a letter identifying a subsystem,
      <P> is a parameter, and <V> is the
      value to use. The flags can be passed to the Erlang emulator
      (erl) as command line
      arguments.
System flags effecting specific allocators have an upper-case
      letter as <S>. The following letters are used for
      the currently present allocators:
B: binary_allocD: std_allocE: ets_allocF: fix_allocH: eheap_allocL: ll_allocM: mseg_allocR: driver_allocS: sl_allocT: temp_allocY: sys_alloc
The following flags are available for configuration of
      mseg_alloc:
+MMamcbf <size>+MMrmcbf <ratio>+MMsco true|falsetrue. When a super carrier is used and this
	flag is true, mseg_alloc will only create carriers
	in the super carrier. Note that the alloc_util framework may
	create sys_alloc carriers, so if you want all carriers to
	be created in the super carrier, you therefore want to disable use
	of sys_alloc carriers by also passing
	+Musac false. When the flag
	is false, mseg_alloc will try to create carriers outside
	of the super carrier when the super carrier is full.
	NOTE: Setting this flag to
false may not be supported
	on all systems. This flag will in that case be ignored.
	NOTE: The super carrier cannot be enabled nor disabled on halfword heap systems. This flag will be ignored on halfword heap systems.
+MMscrfsd <amount>65536.
	This parameter determines the amount of memory to reserve for
	free segment descriptors used by the super carrier. If the system
	runs out of reserved memory for free segment descriptors, other
	memory will be used. This may however cause fragmentation issues,
	so you want to ensure that this	never happens. The maximum amount
	of free segment descriptors used can be retrieved from the
	erts_mmap tuple part of the result from calling
	erlang:system_info({allocator, mseg_alloc}).
      +MMscrpm true|falsetrue. When this flag is
	true, physical memory will be reserved for the whole super
	carrier at once when it is created. The reservation will after that
	be left unchanged. When this flag is set to false only virtual
	address space will be reserved for the super carrier upon creation.
	The system will attempt to reserve physical memory upon carrier
	creations in the super carrier, and attempt to unreserve physical
	memory upon carrier destructions in the super carrier.
	NOTE: What reservation of physical memory actually means highly depends on the operating system, and how it is configured. For example, different memory overcommit settings on Linux drastically change the behaviour. Also note, setting this flag to
false
	may not be supported on all systems. This flag will in that case
	be ignored.
	NOTE: The super carrier cannot be enabled nor disabled on halfword heap systems. This flag will be ignored on halfword heap systems.
+MMscs <size in MB>mseg_alloc will always try to create new carriers in the super
	carrier if it exists. Note that the alloc_util framework may
	create sys_alloc carriers. For more information on this, see the
	documentation of the +MMsco
	flag.
	NOTE: The super carrier cannot be enabled nor disabled on halfword heap systems. This flag will be ignored on halfword heap systems.
+MMmcs <amount>The following flags are available for configuration of
      sys_alloc:
+MYe truesys_alloc. Note: sys_alloc cannot be disabled.+MYm libcmalloc library to use. Currently only
      libc is available. libc enables the standard
      libc malloc implementation. By default libc is used.+MYtt <size>sbrk) that will be kept by malloc (not
       released to the operating system). When the amount of free
       memory at the top of the heap exceeds the trim threshold,
      malloc will release it (by calling
      sbrk). Trim threshold is given in kilobytes. Default
       trim threshold is 128. Note: This flag will
       only have any effect when the emulator has been linked with
       the GNU C library, and uses its malloc implementation.+MYtp <size>malloc when
      sbrk is called to get more memory from the operating
       system. Default top pad size is 0. Note: This flag
       will only have any effect when the emulator has been linked
       with the GNU C library, and uses its malloc
       implementation.The following flags are available for configuration of allocators
       based on alloc_util. If u is used as subsystem
       identifier (i.e., <S> = u) all allocators based on
       alloc_util will be effected. If B, D, E,
        F, H, L, R, S, or T is used as
       subsystem identifier, only the specific allocator identified will be
       effected:
+M<S>acul <utilization>|de<utilization> is an integer in the range
	[0, 100] representing utilization in percent. When a
	utilization value larger than zero is used, allocator instances
	are allowed to abandon multiblock carriers. If de (default
	enabled) is passed instead of a <utilization>,
	a recomended non zero utilization value will be used. The actual
	value chosen depend on allocator type and may be changed between
	ERTS versions. Currently the default equals de, but this
	may be changed in the future. Carriers will be abandoned when
	memory utilization in the allocator instance falls below the
	utilization value used. Once a carrier has been abandoned, no new
	allocations will be made in it. When an allocator instance gets an
	increased multiblock carrier need, it will first try to fetch an
	abandoned carrier from an allocator instances of the same
	allocator type. If no abandoned carrier could be fetched, it will
	create a new empty carrier. When an abandoned carrier has been
	fetched it will function as an ordinary carrier. This feature has
	special requirements on the
	allocation strategy used. Currently
	only the strategies aoff, aoffcbf and aoffcaobf support
	abandoned carriers. This feature also requires
	multiple thread specific instances
	to be enabled. When enabling this feature, multiple thread specific
	instances will be enabled if not already enabled, and the
	aoffcbf strategy will be enabled if current strategy does not
	support abandoned carriers. This feature can be enabled on all
	allocators based on the alloc_util framework with the
	exception of temp_alloc (which would be pointless).
      +M<S>as bf|aobf|aoff|aoffcbf|aoffcaobf|gf|afbf (best fit),
      aobf (address order best fit), aoff (address order first fit),
      aoffcbf (address order first fit carrier best fit),
      aoffcaobf (address order first fit carrier address order best fit),
      gf (good fit), and af (a fit). See 
      the description of allocation strategies in "the alloc_util framework" section.+M<S>asbcst <size>mseg_alloc singleblock carrier is shrunk, the carrier
       will be left unchanged if the amount of unused memory is less
       than this threshold; otherwise, the carrier will be shrunk.
       See also rsbcst.+M<S>e true|false<S>.+M<S>lmbcs <size>mseg_alloc) multiblock carrier size (in
       kilobytes).  See the description
       on how sizes for mseg_alloc multiblock carriers are decided
       in "the alloc_util framework" section. On 32-bit Unix style OS
       this limit can not be set higher than 128 megabyte.+M<S>mbcgs <ratio>mseg_alloc) multiblock carrier growth stages. See
      the description on how sizes for
       mseg_alloc multiblock carriers are decided
       in "the alloc_util framework" section.+M<S>mbsd <depth><S>. When the good fit strategy is used, free
       blocks are placed in segregated free-lists. Each free list
       contains blocks of sizes in a specific range. The max block
       search depth sets a limit on the maximum number of blocks to
       inspect in a free list during a search for suitable block
       satisfying the request.+M<S>mmbcs <size><S>. The main
       multiblock carrier is allocated via sys_alloc and is
       never deallocated.+M<S>mmmbc <amount>mseg_alloc multiblock carriers. Maximum number of
       multiblock carriers allocated via mseg_alloc by
       allocator <S>. When this limit has been reached,
       new multiblock carriers will be allocated via
      sys_alloc.+M<S>mmsbc <amount>mseg_alloc singleblock carriers. Maximum number of
       singleblock carriers allocated via mseg_alloc by
       allocator <S>. When this limit has been reached,
       new singleblock carriers will be allocated via
      sys_alloc.+M<S>ramv <bool>+M<S>rmbcmt <ratio>+M<S>rsbcmt <ratio>+M<S>rsbcst <ratio>mseg_alloc
       singleblock carrier is shrunk, the carrier will be left
       unchanged if the ratio of unused memory is less than this
       threshold; otherwise, the carrier will be shrunk.
       See also asbcst.+M<S>sbct <size>+M<S>smbcs <size>mseg_alloc) multiblock carrier size (in
       kilobytes). See the description
       on how sizes for mseg_alloc multiblock carriers are decided
       in "the alloc_util framework" section.+M<S>t true|falseMultiple, thread specific instances of the allocator.
       This option will only have any effect on the runtime system
       with SMP support. Default behaviour on the runtime system with
       SMP support is NoSchedulers+1 instances. Each scheduler will use
       a lock-free instance of its own and other threads will use
       a common instance.
It was previously (before ERTS version 5.9) possible to configure a smaller amount of thread specific instances than schedulers. This is, however, not possible any more.
Currently the following flags are available for configuration of
      alloc_util, i.e. all allocators based on alloc_util
      will be effected:
+Muycs <size>sys_alloc carrier size. Carriers allocated via
      sys_alloc will be allocated in sizes which are
       multiples of the sys_alloc carrier size. This is not
       true for main multiblock carriers and carriers allocated
       during a memory shortage, though.+Mummc <amount>mseg_alloc carriers. Maximum number of carriers
       placed in separate memory segments. When this limit has been
       reached, new carriers will be placed in memory retrieved from
      sys_alloc.+Musac <bool>sys_alloc carriers. By default true. If
	set to false, sys_alloc carriers will never be
	created by allocators using the alloc_util framework.Instrumentation flags:
+Mim true|falseinstrument
       module. +Mim true implies +Mis true.
      +Mim true is the same as
      -instr.+Mis true|falseinstrument
       module.+Mit XNote!
When instrumentation of the emulator is enabled, the emulator uses more memory and runs slower.
Other flags:
+Mea min|max|r9c|r10b|r11b|configminmaxr9c|r10b|r11bconfigerts_alloc_config, not when using the created
	  configuration.
        +Mlpm all|nono, i.e.,
      no physical memory will be locked. If set to all, all
      memory mappings made by the runtime system, will be locked into
      physical memory. If set to all, the runtime system will fail
      to start if this feature is not supported, the user has not got enough
      privileges, or the user is not allowed to lock enough physical memory.
      The runtime system will also fail with an out of memory condition
      if the user limit on the amount of locked memory is reached.
      Only some default values have been presented here. erlang:system_info(allocator), and erlang:system_info({allocator, Alloc}) can be used in order to obtain currently used settings and current status of the allocators.
Note!
Most of these flags are highly implementation dependent, and they may be changed or removed without prior notice.
erts_alloc is not obliged to strictly use the settings that
        have been passed to it (it may even ignore them).
erts_alloc_config(3)
      is a tool that can be used to aid creation of an
      erts_alloc configuration that is suitable for a limited
      number of runtime scenarios.